
Challenges in verification and validation of autonomous
systems for space exploration

Guillaume Brat and Ari Jonsson
USRURIACS

Abstract-Space exploration applications offer a unique
opportunity for the development and deployment of
autonomous systems, due to limited communications, large
distances, and great expense of direct operation. At the
same time, the risk and cost of space missions leads to
reluctance to taking on new, complex and difficult-to-
understand technology. A key issue in addressing these
concerns is the validation of autonomous systems. In
recent years, higher-level autonomous systems have been
qpl ied iE space ap,plications. In this presentation, we will
highlight those autonomous systems, and discuss issues in
validating these systems. We will then look to future
demands on validating autonomous systems for space,
identify promising technologies and open issues.

1. INTRODUCTION

Space exploration is a powerful driver for technological
advances. To find answers to questions unanswered by past
missions, space missions continually become more
complex, go hrther and longer, and provide more involved
scientific observations. One aspect of the technolbgical
improvements is the role of human control in operating
spacecraft. Earth-observing satellites and lunar excursions
are easily controlled from Earth, albeit at the expense of
maintaining iarge operations staff. iviore distant missions,
such as those to Mars and the outer planets, make direct
human operations more difficult and expensive, due to
communications time lag and the consequent need for the
spacecraft to operate for long times without supervision.
Some mission concepts are impossible with complete
reliance on human operations; e.g., extended exploration of
moons orbiting outer planets.

The use of autonomy in space missions will greatly benefit
space exploration. First, the operations cost can be reduced
significantly as fewer human operators are required; an
essential aspect of making future exploration missions cost
effective and sustainable. Secondly, the use of autonomy
will permit spacecraft to achieve more in less time, and to
accomplish what is otherwise not possible. For example,
autonomous Mars rovers could respond to interesting events
like dust storms, while autonomous lunar construction
rovers could operate continuously. However, autonomous
systems are still rarely used in space exploration; this is in
part due to reluctance to change and in part due to a
technology gap in certifying the behavior of such systems.

The cost of space missions is extremely high. Cheap Mars
missions cost hundreds of millions of dollars. For example,
the Mars Surveyor missions in 1998 (which consisted of an
orbiter, Mars Climate Orbiter, and a lander, Mars Polar
Lander) cost over $300 millions. Expensive missions, such
as Cassini, can cost billions of dollars. Moreover, the risk of
failure for these missions is still very high. For example,
even though the systems used in the Mars Surveyor
missions were fairly simple, both missions were lost. It is
therefore not surprising that mission managers take a
conservative approach when designing their missions and
systems. The first success criterion is to reach the target (be
it Mars or Titan); then come scientific goals. In this context,
it is not surprising that the credo of mission managers is to

fl-y what has been successfully flown before. This leaves
little opportunities for incorporating new technologies,
unless they come with strong guarantees about safety and
reliability. In the case of autonomous systems, this gives
rise to a very challenging verification and validation
problem.

By nature, autonomous systems are required to be more
flexible than traditional systems. Their strength is in
adapting to a large set of circumstances, some of which may
be unknown at design time. This strength becomes their
main weakness when it comes to validation. Our current
validation techniques struggle with existing mission systems
and now we are faced with validating autonomous systems
that can exhibit a much larger set of behaviors. In fact, even
the implementation of these systems presents a new
challenge. In the past, the implementation of embedded
systems has been quite conservative. For example, dynamic
memory allocation is allowed only at starting time as a pool
of available memory, and never at run time. This guarantees
that the memory consumption stays bounded. This has
strong implications in terms of the data structures used in
these systems; e.g., arrays being preferred to dynamic lists.
Such restrictions make systems somewhat amenable to
advanced automated verification techniques. Hardly any
such “useful” restrictions hold for autonomous systems.

So, should we just give up on validating autonomous
systems? We certainly should not. The need for autonomy
in future missions is clear. In addition, inroads have
recently been made in limited use of autonomy-based
s o h a r e for missions. For example, the MAPGEN tool is
being used in the context of the Mars Exploration Rover
(MER) mission. MAPGEN is a planning and scheduling
system which is used to prepare the plans that are up loaded

I

to the rovers at the beginning of each Martian day. Before
MAPGEN, this task was essentially done by hand, severely
limiting the trade-off analysis that could be done. The use of
MAPGEN has allowed the MER ground control team to
reduce the human involvement, speed up the construction of
these sequences, and increase science return. Despite its
obvious advantages, MAPGEN was not easily accepted by
mission managers. One of the critical obstacles was the
validation of the system, and while a careful testing process
satisfied the MER mission’s specific requirements, it was
clear that a better validation process was needed. This
observation is valid for any autonomous system that sees
itself as a candidate for being on-board a spacecraft or a
rover. The requirements and operational limits placed on
autonomous spacecraft software, such as the Remote Agent
Experiment and the EO- 1 Flight Experiment, demonstrate
this [15].

Fortunately, researchers from the Artificial Intelligence and
Software Engineering communities are recognizing the need
for good validating techniques. Recently, the research
community has focused on exploring the commonalities
between automated validation and verification (V&V) and
model-based computing. So far, this activity has yielded
little practical results, but new efforts are underway. In this
paper, we discuss our approach to tackling the validation
and verification of autonomous decision-making control
systems, and highlight some of the techniques being
applied.

The goal of our work is to go beyond exploration and trials,
and move on to develop practical techniques. Our approach
is as follows. First, since models are at the core of
autonomous systems, we need to develop techniques to
verify models, constraints and their manipulations in
reasoning engines. For that, we plan on relying on model
checking tec‘hniques, which nave matured considerabiy the
past few years. This allows us to verify safety properties on
autonomous systems. In addition, our experience with
previous NASA software shows that run-time errors (e.g.,
out of bound array accessing, or arithmetic overflow and
underflow) are the most common programming errors.
Therefore, we propose to complement model checking with
the use of static analysis. Recent work has shown that
modem static analyzers are not plagued with problems of
scale and the generation of too many false alarms. Yet, we
believe that scalability will remain an issue since
autonomous systems yield such large sets of behaviors. We
tackle this problem from two angles. First, we will rely on
the assume-guarantee framework to implement a form of
compositional verification. This allows us to divide the
verification process into two phases. In the first phase,
modules are verified separately. In the second phase,

. verification results for the modules are put together to
ensure the verification of the whole system. Recent work
has shown the feasibility of the approach to verify the
executive a planning and scheduling system. Second, we
will investigate the automatic synthesis of code for
autonomous systems. Code synthesis is an interesting and

useful approach, as it reduces the role played by human in
code development, while also providing an opportunity for
controlling the “shape” of the code for autonomous systems.
This capability is extremely interesting in terms of
verification because it allows us to bias our verification
algorithms towards specific coding constructs. This
typically leads to more precise and scalable verification.

2. AUTONOMOUS SYSTEMS

Most autonomous systems use a model-based approach. In
a model-based system, application-specific information, like
the capabilities and limitations of a rover, are described in a
model of the application, not in implemented code. A
general-purpose reasoning system uses the model to operate
the entity in question. To ground this, consider a simple
Martian rover. A model of this rover would describe its
operational capabilities and limitations at a suitable level of
abstraction; for example, it would specify that the rover can
take a picture in a given range of directions, that taking such
a picture requires the camera and CPU to be powered on,
and that the taking of a picture will consume given
quantities of energy and data storage resources. A general-
purpose model-based autonomous system would then use
such a model to operate the rover. It would make sure that
planned operations stay within energy and data storage
capacity limit and that the execution of planned operations
yields the expected results. Systems operating rovers,
spacecraft, and other systems in such a plan-execute cycle
are very common.

Model-based autonomus planning and execution systems
are the primary candidates for future roles in spacecraft
operations and space exploration.. Consequently, we focus
our V&V efforts on these systems. To ground our
examination, we will look at an autonomy architecture
currently under development in a collaborative effort
between researchers at NASA Ames Research Center and
NASA’s Jet Propulsion Laboratory. The architecture is
based on a robotic control framework called CLARAty
(Coupled Layer Architecture for Robotic Autonomy).
CLARAty [16] is a modular architecture, designed
specifically for space-based robotic control applications. It
provides a wide-range of robotic control functionality and is
designed to ease the integration of new technologies on
robotic platforms. CLARAty features a Functional Layer of
robotic primitives, coupled with a Decision Layer of
planning and execution hnctionality; each of these layers
contains a hierarchy of components ranging from the most
elementary to the most “intelligent”.

The Functional Layer (FL) provides a set of standard,
generic robot capabilities that interface to system hardware
[16]. These capabilities are organized as a software class
hierarchy of robotic components; for example, wheeled-
mobility is a subclass of mobility, and individual rover
wheel assemblies are child classes. As is natural in object

oriented systems, the interface is separated from
implementation. Physical limitations of devices are
distinguished from algorithmic limitations. Finally, runtime
models of devices are incorporated in the Functional Layer.

EUROPA
Decision layer

The Decision Layer (DL) [6] provides capabilities for
autonomously creating and executing sequences of rover
actions that achieve specified operations tasks. This
involves planning, schedding, Ilioiiitoied executioii, a d a
number of other capabilities. In the past, the decision layer
capability has been provided by the CASPER planning
system [4] and the TDL executive [IS], which were
developed at JPL and CMU. TDL is a Ct+ extension that
provides syntactic support for task decomposition,
synchronization, execution monitoring and exception
handling CASPER is a continuous planning system that
can continually update the current plan based on changing
state, environment and mission goal information.

Domain
+-- model

Figure 1. The autonomous system architecture.

In the autonomy architecture used in our work, the decision
layer capabilities are provided by the Extendable Uniform
Remote Operations Planning Architecture (EUROPA). The
architecture of the integrated system is shown in Figure 1.
EUROPA is a model-based planning and scheduling
architecture descended !?om the Remote Agent Planner;
previous versions of the technology are described in [9, 141.
Users of ELXOPA can specify the rules of planning

domains using a rich domain description language that
supports time, resources, disjunctive preconditions and
conditional effects. EUROPA provides support for “foreign
function” calls implementing arbitrary constraints.
EUROPA consists of a hierarchy of highly configurable
components, supporting the development of many types of
planners and plan representations. EUROPA’s plan
databases employ a generic constraint reasoning capability
that can support both long-range deliberative planners as
well as short-horizon continuous planners. Finally,
EUROPA allows multiple planners to modify the same plan.

3. V&V CHALLENGES

The elements of the autonomous system we are considering
offer different challenges in terms of verification. For

example, the V&V issues with a planner are quite different
from the V&V issues of a functional component controlling
a physical device (such as the wheel of a rover). In the first
case, V&V is dealing with issues such as correct
manipulation of plans, domain model consistency checking,
or correct resource utilization reasoning. In the second case,
we are more concerned with traditional issues such as
runtime errors, concurrency and timing problems. The V&V
tools that can address these problems are quite different.
Moreover, they are at different maturity levels. In any case
here is a list of the challenges we are facing.

Function a1 laver

The functional layer consists of C++ device controllers
organized in a hierarchy of controllers. Some are simple
controllers; others are more complex and consist of several
components cooperating to implement complex controllers
(e.g., controllers for wheels include controllers for adjusting
speed as well as for turning wheels). In general, they do not
present a new challenge for V&V in the sense that they are
similar to controllers in embedded systems. Moreover, since
most of the “intelligence” in autonomous systems is placed
in the decision layer, they are fairly simple C++ programs.
Therefore. we do not anticipate any problem applying
traditional V&V tools such as static analyzers.

The static analysis of functional components consists of
verifying their implementations with respect to the formal
semantics of C++. The main task is to certify that a
component is free of errors such as array-out-bound
accesses, null pointer de-referencing, and the use of un-
initialized variables. These errors are violations of the C++
semantics, but are not yet checked by compilers.
Fortunately, they can be checked at compile time using
sophisticated static analyzers. These analyzers come in two
categories. The first one consists of fast and highly scalable
analyzers, which unfortunately do not guarantee full
coverage (Coverity, Clockwork). These tools are typically
useful in a development environment, but not so much in a
certification context. The second category consists of
analyzers guaranteeing full code coverage (PolySpace,
CGS, Astrte) [l, 201. We will investigate the synergy
between these tools and the certification done in synthesis.

Furthermore, controllers are fairly small programs, which
will allow us to check complex properties (such as response
properties of the style “upon this event occumng, this action
should be taken”) using model checkers. Model checking is
the task of verifying that a property (a functional correctness
criterion) is a model of a system (the code implementing the
functional component). Functional correctness properties
are defined using logic or automata. In recent years, there
has been quite a bit of interest in applying model checking
to software verification [2, 5 , 11, 121. These experiments
have demonstrated two important results. First, model
checking is applicable directly to code rather than having to
translate code to a model using some modeling language
(which always introduces uncertainty with respect to the

correctness of the translation). For example, the JPF model
checker works directly on Java byte code. There is on-going
work to adapt this strategy to C++. Second, scalability
remains a critical issue. However, this technology can scale
to a few thousand lines of code, which is sufficient for our
purpose.

Physical controllers present another major validation
challenge that is not always addiessed by the V&V
community. Indeed, controllers generally assume specific
behaviors for the physical systems they control. These
assumptions may not correspond to the physical reality.
This may be addressed by using high-fidelity testbeds,
though it only postpones the problem to the validation of the
testbed. Ultimately, there is no escaping field testing to
verify that the behavioral assumptions fit reality. Even there,
we are only able to approximate the conditions under which
these applications will be deployed (e.g., Mars).

Decision layer

Verifying a planner is an enormous challenge considering
that planners are meant to find intricate solutions in very
large state spaces. Therefore, pretending to be able to verify
the same state space with V&V tools seems somewhat
futile. However, search techniques in V&V tools have one
advantage, in this respect. over planning search techniques;
they take advantage of abstraction. Typically, V&V tools
focus on one property at a time, which allows them to focus
their search on specific aspects of the state space while
blurring the rest in a conservative (in the sense that they
generalize behaviors into classes of behaviors rather than
eliminating some behaviors) abstraction. In principle, search
techniques in planning could achieve the same by using
appropriate heuristics (i.e., the heuristic computes the
abstraction dynamically). Incidentally, abstraction is also
used to verify functional components. In any case. since the
problem of verifying a planner is so complicated one might
wonder what can be done to give us some assurance that the
planner does its job.

First, we can look at the domain model used by the planner.
Model checking techniques can be used rather efficiently to
prove interesting properties on models. For example, model
checkers can be used to check for inconsistencies,
ambiguities, and, in some cases, incompleteness. Pecheur
and Cimatti showed the feasibility of this approach by
applying it to diagnosis systems [171. There seem to be two
complementary approaches. The first approach consists of
translating the constraints in the domain modcl into S M V
properties and then using the S W symbolic model checker
to verify the properties [3]. In general, symbolic model
checking scales very well. This is especially true for the new
generation of checkers based on SAT resolution. The second
approach relies on explicit state model checkers (in which
the state space is explored using DFS or BFS search
algorithms) such as SPIN [I31 or JPF. Pechcur showed that
they can be used to diagnose ambiguities in models.

Second, we can actually verify that some basic planner
capabilities are correctly implemented. Planners manipulate
plans, which are nothing but list or tree data structures. In
general, lists constitute a hard problem for static analyzers
and model checkers. Part of the problem resides in the fact
that they can grow unbounded. However, the fundamental
problem is that, so far, they have not laid themselves well to
abstractions. Therefore, advanced V&V tools are mostly
used as advanced testing tools. For example, an explicit-
state model checker is used to explore all concurrent aspects
for a given test input. To realize that, it also has to closely
approximate the system behaviors; this results in a loss of
scalability and generality. Furthermore, these tools do not
provide much benefit over the traditional testing paradigm
since they still rely on generating appropriate (Le.,
meaningful with respect to the application conditions and
extensive in terms of behavioral or code coverage) test sets.

Fortunately, recent research has shown that it is possible to
design efficient absrraction for some specific types of lists
and trees. For example, Venet has designed a numerical
abstraction for well-behaved (which we will left unspecified
at this time) lists [19]. He uses this abstraction to design a
static analysis that is precise, and scalable, for these lists.
For example, the analysis can track order (e.g., causal)
relationships amongst list elements. In another example,
Visser and Pasareanu use a list abstraction that can be used
to automatically generate test cases for programs
manipulating complex data structures. Their technique
propagates throughout the program a symbolic list
representation that is partially concretized when individual
fields (of the data structure) are accessed by the currently
considered instruction. This “lazy” concretization strategy
can bc used to obtain test inputs that provide a specific
coverage of the program. We believe that such techniques
are getting mature enough that we can use them to provide
meaniiigfiili: V&V iesiilts ciii the plaiinci.

Interface and System Composition

The problem of verifying an executive layer is not
fundamentally different from verifying the decision layer.
Again, we are facing the problem of verifying a program
that manipulates lists or trees (i.e., plans). While a planner
puts a list together according to activities, an executive
checks timing issues and then executes the plans by calling
the right functional elements at the right time. Again, we
can use the same techniques (static analysis with numerical
abstraction and symbolic execution with list abstraction) to
evaluate the correctness of the executive. Yet, we are still
left with the problem of verifying that the executive
interfaces correctly with the planner and the functional
elements.

Actually, the problem of composition is not restricted to the
interface layer. Because of their internal complexity other
elements face the same issue. For example, a functional
element might consist of a composition of simpler
functional elements. The planner itself might rely on

different modules to deal with different issues such as
resource checking [8] or reasoning under uncertainty.
Therefore, it is important to devise a V&V strategy that can
deal with system composition. It promotes re-usability of
components (and V&V artifacts) as well as V&V
scalability. Fortunately, compositional verification has been
the object of intense research these past few years. We
intent to build on it and, for example, expand the work of
Giannakopodou and Pasareanu 3n assume-guarantee
reasoning.

Compositional verification is a divide-and-conquer
technique that aims at taking advantage of the modular
architecture of a system in order to decompose the hard
(expensive) problem of system verification into manageable
verification of its components. The idea is to check
separately each component against a local property, in order
to avoid the state-space explosion problem associated with
checking a global (system-level) property on the entire
system; this problem occurs as a result of storing the entire
system state in memory. Components often satisfy
properties only in specific contexts (or environments).
Assume-guarantee style compositional reasoning imposes
that each component makes assumptions about its
environment (Le. the rest of the system). Of course, these
assumptions need to be discharged by verifying that the rest
of the system satisfies them. To automate assume-guarantee
reasoning, appropriate assumptions must be generated,
which can be done automatically from legacy code as
described in [lo].

5. THE ROLE OF SYNTHESIS

As we discussed in the previous section, system
composition is a central issue in our work. In fact, it is the
most important aspect of our work since our goal is to
provide a framework allowing a fast, and trusted,
reconfiguration of autonomous systems. For example, we
look at scenarios where some physical elements (such as
cameras on rovers) can be plugged in and out of the system.
Another more extreme scenario consists of changing the
planner or, at least, modifying the planning strategy. Our
target users are users, and not designers, of this technology.
Therefore, we want to automate the reconfiguration of the
system. To accomplish this goal, we will heavily rely on
software synthesis.

Software synthesis is the process of automatically
generating programs from high-level specifications by
successive steps. Software synthesis can be used to
automatically generate programs to perform a desired
fimction from a given software component library. The goal
of certifiable synthesis is to separate the code generation
from the notion of correctness of the code while still
providing support for verification in the form of
automatically generated annotations [7]. For example,
Fischer et al. use techniques based on schema rewriting

rules to generate both code and annotations, and, automated
theorem proving and proof checkers to certify the generated
code. Existing techniques use automated theorem proving
(i.e. no user intervention, and therefore, no expertise
required). Past experience shows that synthesis can be
adapted to practical applications, even those involving
complex mathematical specifications such as differential
equations. Existing work has demonstrated realistic
p rcg rm synthesis in the domains of state estimation [21]
and data analysis software. Other tools have been used to
generate code functionally equivalent to the attitude control
system of the Deep Space 1 spacecraft, as well as data
analysis code for Hubble planetary data.

Moreover, the generation of annotations offers opportunities
of synergy between synthesis and software verification
techniques, such as

pre-verification of the schemas - providing some
support for moduiarization of the verificarion process,

generation of certification conditions - allowing an
earlier use of verification,

availability of high-level contextual information -
providing us with clues about the user intent,

control over the coding constructs, - allowing us to
pick the construct most amenable to verification, and,

control over the structure of the generate code, -
allowing us to reduce the state space explored by the
verification engines.

Our strategy consists of placing synthesis at the center of the
reconfiguration process. By controlling the structure of the
code we generate we can limit the risks associated with
using advanced V&V techniques (see previous section).
Moreover, synthesis comes with a certification strategy that
we can use to provide trusted systems.

6. CONCLUSION

In this paper, we presented a strategy to verify autonomous
systems (in our case, planning and scheduling systems). We
are relying on a combination of advanced verification
techniques (static analysis, model checking, compositional
verification, and automated test generation) and code
synthesis (with certification) to provide trust in these types
of systems. Our approach goes together with a design
strategy in which we configureldesign autonomous systems
based on known building blocks (the CLARAty functional
components and the EUROPA framework). Therefore, the
notion of composition (in terms of both verification and
system design) is critical to the success of our endeavor.

We believe that our approach is a good starting point to
designing practical V&V techniques for autonomous

L

systems. However, we are very interested in the opinion of
the research community. Therefore, we hope that this talk
will be an opportunity to spark interest in the validation of
autonomous systems. We are looking forward to the
discussions that our approach is bound to create.

We would like to acknowledge the contributions of the other
members of our project to this discussion. Jeremy Frank,
Tara Estlin, and Mark Boddy provided invaluable
information about P&S technology (in particular with regard
to CLARAty and EUROPA). Dimitra Giannakopoulou and
Ewen Denney were also precious in shaping our vision
about verification and synthesis.

[9] J. Frank and A. Jonsson, “Constraint-Based Attribute and
Interval Planning.” In the Journal of Constraints, vol. 8,
no. 4,3003.

[lo] D. Giannakopoulou, C. Paraseanu, and H. Bamnger,
“Component Verification with Automatically Generated
Assumption,” Journal of Automated Software
Engineering, Vol. 1 1, Kluwer, 2004.

[l l] P. Gluck and G. Holzmann, “Using Spin Model
Checking for Flight Software Verification,” Proceeding of
2002 Aerospace Conference, March 2002.

[12] G. Holzmann, “Software Analysis and Model
Checking,” Proceedings of CAV 2002, July 2002.

7. REFERENCES

[l] B. Blanchet et al. “Design and implementation of a
special-purpose static program analyzer for safety-critical
real-time embedded software.” LNCS 2566, pp. 85-108,
2003.

[2] G. Brat, S. Park, K. Havelund, and W. Visser, “Java
PathFinder - Second Generation of a Java Model
Checker,” In POST-CAV Workshop on Advances in
Verification, 2000.

[3] J. R. Buch, E.M. Clarke, K.L.McMillan, D.L. Dill, and J.
Hwang, “Symbolic Model Checking: 10E20 states and
beyond,” In LICS, 1990.

[4] S. Chien, R. Knight, S. Stechert, R. Shenvood, and G.
Rabideau, “Using Iterative Repair to Improve the
Responsivcncss of Planning and Scheduling,“ Proc of the
Fifth Int’l C o d on Artificial Intelligence Planning and
Scheduling, April 2000.

[5] W. Deng, M. Dwyer, J. Hatcliff, G. Jung, Robby, and G.
Singh, “Model-Checking Middleware-based Event-dnven
Real-time Embedded Software,” Proceedings of 1 st Intl.
Symposium on Formal Methods for Components and
Objects, 2002.

[6] T. Estlin, F. Fisher, D. Gaines, C. Chouinard, S. Schaffer,
and I. Nesnas, “Continuous Planning and Execution for an
Autonomous Rover,“ 3rd Int. NASA Workshop on
Planning and Scheduling for Space, Oct 2002.

[7] B. Fischer and J. Schumann, “AutoBayes: A System for
Generating Data Analysis Programs fi-om Statistical
Models. Journal of Functional Programming. Vol. 13, No.
3, May 2003, pp. 483-508.

[SI J. Frank, “Bounding the Resource Availability of Partially
Ordered Events with Constant Resource Impact”, In
Proceedings of the 10th International Conference on
Principles and Practices of Constraint Programming,
2004.

[131 G. Holzmann, “The Spin Model Checker - Primer and
Reference Manual,” Addison-Wesley. September 2003.

[14] A. Jonsson, P. Moms, N. Muscettola, K. Rajan, and B.
Smith, “Planning in Interplanetary Space: Theory and
Practice.” Proceedings of the International Conference on
Artificial Intelligence Planning and Scheduling, 2000.

[151 N. Muscettola and P. Nayak and B. Pel1 and B. Williams,
“Remote Agent: To Boldly Go Where No AI System Has

. Gone Before.” Artificial Intelligence, 103(1 -2), 1998.

[16] I.A. Nesnas, A. Wright, M. Bajracharya, R. Simmons,
and T. Estlin, Won So0 Kim, “CLARAty: An
Architecture for Reusable Robotic Software,” S P E
Aerosense Conference, April 2003.

[17] C. Pecheur and A. Cimatti, “Formal Verification of
Diagnosability via Model Checking,” Workshop on
Model Checking and Artificial Intelligence, July 2002.

[IS] R. Simmons and D. Apfelbaum, “A Task Description
Language for Robot Control.” Proc. of the Conference on
Intelligent Robots and Systems (IROS), 1998.

[191 A. Venet, “A Scalable Nonuniform Pointer Analysis for
Embedded Programs,” Proceedings of SAS 04, Verona,
Italy. LNCS 3148, Pp. 149-164, Springer 2004.

[20] A. Venet and G. Brat, “Precise and Efficient Static Array
Bound Checking for Large Embedded C Programs,”
Proceedings of PLDI 2004, Washington, D.C., June 2004.

[21] J. Whittle and J. Schumann, “Automating the
Implementation of Kalman Filter Algorithms,” Accepted
for publication in ACM Transactions on Mathematical
Software (TOMS).

